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The work presented extends previous research on linear controllers in temporal chan-
nel flow to spatially evolving boundary layer flow. The flows studied are those on an
infinite swept wedge described by the Falkner–Skan–Cooke (FSC) velocity profiles,
including the special case of the flow over a flat plate. These velocity profiles are used
as the base flow in the Orr–Sommerfeld–Squire equations to compute the optimal
feedback control through blowing and suction at the wall utilizing linear optimal con-
trol theory. The control is applied to a parallel FSC flow with unstable perturbations.
Through an eigenvalue analysis and direct numerical simulations (DNS), it is shown
that instabilities are stabilized by the controller in the parallel case. The localization
of the convolution kernels for control is also shown for the FSC profiles.

Assuming that non-parallel effects are small a technique is developed to apply
the same controllers to a DNS of a spatially evolving flow. The performance of
these controllers is tested in a Blasius flow with both a Tollmien–Schlichting (TS)
wave and an optimal spatial transiently growing perturbation. It is demonstrated
that TS waves are stabilized and that transient growth is lowered by the controller.
Then the control is also applied to a spatial FSC flow with unstable perturbations
leading to saturated cross-flow vortices in the uncontrolled case. It is demonstrated
that the linear controller successfully inhibits the growth of the cross-flow vortices to
a saturated level and thereby delays the possibility of transition through secondary
instabilities. It is also demonstrated that the controller works for relatively high levels
of nonlinearity, and for stationary as well as time-varying perturbations.

1. Introduction
In many fluid-mechanics systems, like boundary layers undergoing transition to

turbulence, a dramatic effect on global flow parameters may be achieved by minute
local perturbations. Whereas such a fundamental instability property is a problem
in many applications, it can be the basis for dramatic performance improvements
of fluid-mechanics systems using devices sensing and acting only on small parts of
the flow with minute energy. Such control devices could be used to obtain drag
reduction on bodies, increased lift on wings, increased propulsion efficiency, heat- and
mass-transfer reduction or enhancement, control of combustion instabilities, control
of vortex shedding and aeroacoustic pressure fluctuations.

Recent advances in computer capacity, sensor development and systems control
for fluid dynamics have opened new possibilities for the design and control of flow
systems (see for instance the review articles of Gad-el-Hak 1996; Lumley & Blossey
1998 and Bewley 2001). Worldwide this area has seen a strong expansion over the
last few years.
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Traditionally passive control, i.e. design or flow alteration not dynamically depen-
dent on the state of the flow, has been used to control fluid-mechanical systems.
Active control of boundary layers is a more recent development, where e.g. transition
has been delayed by cancelling Tollmien–Schlichting (TS) waves by anti-phase modal
suppression. Early work is reviewed by Thomas (1990) and a brief later review is
given by Metcalfe (1994). These studies show that the instabilities may indeed be
significantly suppressed, but complete elimination of the primary disturbances is not
obtained.

Researchers have only recently attempted to apply optimal-control ideas to flow
control problems. A main feature of such an approach is that no a priori knowledge of
the functional behaviour of an effective control is needed. Also, the method is general;
it can be used for such disparate tasks as finding the optimal shapes of wings (Jameson
1989), minimizing the vorticity of an unsteady internal flow by manipulating the inlets
(Berggren 1995), as well as controlling boundary-layer transition (Joslin et al. 1997)
and turbulence (Bewley, Moin & Temam 2001). In addition, optimal control based
on linearized equations has shown great success in recent applications to channel
flow (see Joshi, Speyer & Kim 1997; Bewley & Liu 1998; Högberg & Bewley 2000
or Högberg, Bewley & Henningson 2002). In this approach modern linear control
theory is used to construct feedback control kernels as well as estimator forcing
kernels, which can be used together as an on-line compensator. In Högberg et al.
(2002) it is demonstrated that the convolution kernels obtained through this approach
are localized, meaning that their tails decay exponentially a finite distance from the
origin. This implies that the state information utilized by the optimal controller is
only that in the neighbourhood of the actuator. The implications of this localization
property for physical implementation of these controllers is discussed thoroughly in
Bewley (2001).

Control of transition in boundary layer flows has numerous application areas,
but so far there has been little use made of active control strategies in practice.
Experimentally control has been applied to boundary layer flows using both passive
and active strategies, utilizing many different means of actuation. A complete review
is not given here but, rather, a few examples to give a flavour of the activities
in this field. Passive strategies include using riblets and surface roughness to modify
the flow. A thorough study on the use of riblets to suppress the intensity of streamwise
vortices in boundary layers is summarized by Kozlov & Grek (2000). Using passive
control, Saric, Carrillo & Reibert (1998) showed that it was possible to use leading-
edge roughness for transition control in order to delay transition by exploiting the
nonlinear nature of the flow. To use this method in a general case an actuation
method was developed by White & Saric (2000) who introduced a variable surface
roughness at the leading edge of a swept wing to actively control transition initiated
by cross-flow vortices. The success of generalizing the passive control scheme into
an active one relies on a better understanding of the transition process, especially
the role of secondary instabilities. The breakdown of a localized disturbance into a
turbulent spot in a flat-plate boundary layer was successfully delayed using active
wall bumps by Breuer, Haritonidis & Landahl (1989). An active strategy to control
streamwise vortices and streaks in boundary layers was applied by Jacobson &
Reynolds (1998). They developed an actuator that produces a high- and a low-
speed streak that was used to delay transition. The use of these active control
strategies in a practical feedback control scheme relies, in addition to a good physical
understanding of the transition process, on development of accurate sensors and
actuators.
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As an alternative to experiments, computations can be used to investigate what is
possible to achieve under ideal conditions, as well as to test new strategies. Active
control of cross-flow vortices related to the aforementioned work by Saric et al.
(1998) has been studied numerically by Wassermann & Kloker (2000) where an out-
of-phase type control was applied to cross-flow vortex packets using direct numerical
simulation (DNS). They found that a modal control, where the phase shift of the
control was adjusted individually for different modes, was necessary to achieve an
effective total amplitude reduction. Cathalifaud & Luchini (2000) applied an optimal
control technique to the boundary layer equations to control optimal spatially de-
veloping perturbations in the boundary layer on a flat or concave wall. They used
the adjoint equations to perform a gradient-based optimization with the objective
of minimizing the perturbation energy in different spatial intervals. Mughal (1998)
used the compressible parabolized stability equations (PSE) to investigate the effect
of simple feedback boundary conditions for the wall-normal velocity to control for
example TS-waves and Görtler vortices. In recent work Pralits, Hanifi & Henningson
(2001) have developed a method to couple the boundary layer equations and the
PSE in order to optimize a steady mean-flow-modifying suction in order to minimize
growth of perturbations in boundary layer flows. Walther, Airiau & Bottaro (2001)
used PSE to compute the optimal zero mass flux control for a TS wave in a developing
boundary layer. A slightly different approach was investigated by Balakumar & Hall
(1999) where an optimization problem coupling the boundary layer equations and the
linear stability equations was solved with the objective of moving the transition point
instead of minimizing the perturbation energy. The numerical approaches to flow
control often assume ideal conditions that are not present in practice. Robust control
schemes are vital in order to make the step from computers to the experimental
setting and to practical applications.

In the present paper the linear control approach from Högberg & Bewley (2000)
and Högberg et al. (2002) is applied to spatially evolving boundary layer flows to
investigate whether a linear controller developed for a parallel flow also provides
stability in a non-parallel flow. In § 2.1 the Falkner–Skan–Cooke (FSC) boundary
layer profiles are introduced and then the formulation of the linear control problem is
presented in § 2.2. The solution procedure for the optimal control problem is outlined
in § 2.3 and the extension to spatially developing boundary layers is explained in § 2.4.
Numerical issues regarding the computation of the feedback controllers is presented
in § 3.1, and descriptions of the numerical simulations performed and the methods
used are given in § 3.2. In § 4 the linear optimal control is applied to a parallel
FSC flow in order to explain some features of the control as well as to validate
the control strategy and the numerical implementation. Results from simulations
with and without control in spatially developing boundary layers are presented in
§ 5 for the Blasius boundary layer and in § 6 for the FSC boundary layer for non-
stationary as well as stationary perturbations. Finally a discussion and conclusion
follow in § 7.

2. Linear control theory
2.1. Falkner–Skan–Cooke boundary layers

We start by introducing the mean-flow profiles to be used for linearization of the
Navier–Stokes equations. The Falkner–Skan–Cooke boundary layer profile family
includes a large variety of flows. It includes the Blasius boundary layer as a special
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case, and the effect of sweep and favourable/adverse pressure gradients can be
added. These different flows have been studied previously and are known to exhibit
different types of primary instabilities. In order to test the control strategy for
different types of instabilities we need to examine its effectiveness in a few different
flows.

We assume that the chordwise base flow at the boundary layer edge obeys a power
law according to U∗∞ = U∗0 (x∗/x∗0)m and that W ∗∞ = constant. Note that the asterisk
(∗) usually denotes a complex conjugate transpose, but here it is used to denote
dimensional variables. A self-similar solution may be found from the boundary layer
equations if we select

η = {(m+ 1)U∗∞/2νx
∗}1/2y∗. (2.1)

Using a stream-function formulation, the equations for the self-similar boundary
layer profiles can be derived (see e.g. Schlichting 1979),

f′′′ + ff′′ + βH (1− f′2) = 0, (2.2)

g′′ + fg′ = 0, (2.3)

where the Hartree parameter is βH = 2m/(m+ 1) and the boundary conditions are

f = f′ = g = 0 for η = 0, (2.4)

f′ → 1, g → 1 as η →∞. (2.5)

The solutions f′ and g can then be combined into the Falkner–Skan–Cooke velocity
profiles, see Cooke (1950), as

U(y) = f′[η(y)], (2.6)

W (y) =
W ∗∞
U∗∞

g[η(y)], (2.7)

with y = y∗/δ∗0 and

η(y) =

(∫ ∞
0

(1− f′) dη

){
U∗∞x∗0
U∗0x∗

}1/2

y,

where x∗0 is a fixed position and U∗0 is the free-stream velocity at that position. The
profiles (2.6) and (2.7) will be used as a base flow in the control computations and as
initial conditions in the direct numerical simulations presented.

2.2. Control problem formulation

To investigate the stability of a flow to small disturbances, we assume that the flow
can be divided into two parts:

u = (u, v, w) = (U, 0,W ) + (u′, v′, w′), (2.8)

where U and W are the base flow components in the chordwise and spanwise
directions, respectively. The coordinate system and base flow velocity profiles are
illustrated in figure 1. It is here assumed that the parallel flow assumption holds,
i.e. the base flow components only vary with the normal coordinate. The primed
quantities represent a small perturbation. We also assume wave-like disturbances of
the form

u′ = û(y, t) ei(αx+βz), (2.9)
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Figure 1. Falkner–Skan–Cooke base flow and coordinate system used in this report. ψ is the angle
with the streamline of the flow in the free-stream, U∞ is the chordwise free-stream component and
W∞ is the spanwise free-stream component. The dashed line is the streamline of the flow in the
free-stream over a flat plate with a pressure gradient in the x-direction.

where α and β are the x- and z-components of the wavenumber vector and û(y, t)
is the complex amplitude function for the corresponding velocity. Inserting these
assumptions into the Navier–Stokes equations and linearizing, we find the resulting
disturbance equations, which can be reduced to the following set of two coupled equa-
tions where appropriate boundary conditions have been included to allow inversion
of the Laplacian (∆ = (D2 − α2 − β2)):

dv̂

dt
= ∆−1

[
−(i αU + i βW )∆ + i αD2U + i β D2W +

1

R
∆2

]
︸ ︷︷ ︸

LOS

v̂, (2.10)

dη̂

dt
= [i αDW − i β DU]︸ ︷︷ ︸

LC

v̂ +

[
−i (αU + βW ) +

1

R
∆

]
︸ ︷︷ ︸

LSQ

η̂, (2.11)

where v̂ and η̂ = i(βû−αŵ) are the amplitude functions for the normal velocity and the
normal vorticity, respectively. D denotes the derivative operator in the wall-normal
direction. The boundary conditions are

v̂(0, t) = ϕ̂, Dv̂(0, t) = 0, η̂(0, t) = 0,

v̂(y, t)→ 0, Dv̂(y, t)→ 0, η̂(y, t)→ 0 as y →∞. (2.12)

Here R is the Reynolds number based on the velocity scale U∞ and the displace-
ment thickness δ∗, both taken at the streamwise location x0. The normal velocity
on the wall v̂(0, t) = ϕ̂ is our control input to the system. Re will be used to
denote the Reynolds number based on local displacement thickness and free-stream
velocity.

Equation (2.10) is referred to as the Orr–Sommerfeld equation, and (2.11) is known
as the Squire equation. The U(y) and W (y) profiles used in this investigation are
taken from (2.6) and (2.7) in the previous subsection. Since (2.10) and (2.11) is a
linear system of equations we can divide the solution into one homogeneous (v̂h, η̂h)
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and one inhomogeneous (v̂p, η̂p) part such that,[
v̂

η̂

]
︸ ︷︷ ︸
x̂f

=

[
v̂h

η̂h

]
︸ ︷︷ ︸
x̂h

+

[
v̂p

η̂p

]
︸ ︷︷ ︸
Ẑ

ϕ̂, (2.13)

where the conditions on the particular solution are such that it satisfies the boundary
condition (2.12) with ϕ̂ = 1. Finding a particular solution with non-zero normal
velocity on the wall allows us to parameterize the inhomogeneous part of the solution
with the time derivative of the wall-normal velocity:

d

dt

[
v̂

η̂

]
=

[ LOS 0

LC LSQ

]
︸ ︷︷ ︸

N

[
v̂

η̂

]
⇒ ˙̂xh = Nx̂h + NẐϕ̂− Ẑ ˙̂ϕ, (2.14)

with the boundary conditions,

v̂h(0, t) = 0, Dv̂h(0, t) = 0, η̂h(0, t) = 0, (2.15)

v̂h(y, t)→ 0, Dv̂h(y, t)→ 0, η̂h(y, t)→ 0 as y →∞. (2.16)

Now control theory can be used to determine ˙̂ϕ from x̂h. Introducing x̂ = [x̂h, ϕ̂]T

we can write

˙̂x = Ax̂+ B ˙̂ϕ, where A =

[
N NẐ

0 0

]
, B =

[ −Ẑ
1

]
. (2.17)

One very important issue is to determine in what sense the controller should be
optimal. Our goal of preventing transition does not easily translate into a quadratic
measure of the state to be minimized, and the question of what the ‘optimal’ objective
is remains open. Here the choice is to minimize the perturbation energy, although
other options might also be justified from physical arguments. The objective function
used is

J =

∫ T

0

(x̂∗Qx̂+ `2 ˙̂ϕ
∗ ˙̂ϕ) dt, (2.18)

where Q is a measure of the energy of the perturbation and ` is a parameter penalizing
the magnitude of ˙̂ϕ. For each wavenumber pair Q can be written,

Q =

[ Q QZ
Z∗Q (1 + r2)Z∗QZ

]
, (2.19)

where Q is such that

x̂∗fQx̂f =
1

y∞

∫ y∞

0

x̂∗fC∗1C1x̂fdy =
1

4 y∞ k2

∫ y∞

0

(
∂v̂

∂y

∗ ∂v̂
∂y

+ k2 v̂∗v̂ + η̂∗η̂
)

dy, (2.20)

with k2 = α2 +β2. The parameter r2 is used to add an extra penalty on ϕ̂2 in addition
to the natural penalization obtained through the lifting.
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2.3. Solution procedure for the optimal control problem

The optimal controller is given through the solution of the optimization problem;
find ˙̂ϕ that minimizes the objective function (2.18) subject to

˙̂x = Ax̂+ B ˙̂ϕ, x̂(t = 0) = x̂0. (2.21)

A heuristic summary of the solution procedure for the optimal control problem
follows. Taking the first variation with respect to the state and the control of equation
(2.21) and the objective function (2.18) we can in the inner product,

〈f, g〉 =
1

y∞

∫ T

0

∫ y∞

0

f∗g dy dt, 〈f,Hg〉 = 〈H∗f, g〉+ boundary terms,

derive the corresponding adjoint equation. Using the adjoint identity we can manip-
ulate the inner product of p̂(y, t) and the first variation of the state equation such
that

〈p̂, δ ˙̂x− Ax̂− B δ ˙̂ϕ〉 = 〈− ˙̂p − A∗p̂, δx̂〉 − 〈B∗p̂, δ ˙̂ϕ〉+ boundary terms = 0. (2.22)

By introducing the adjoint equation,

− ˙̂p = A∗p̂ +C∗1C1x̂, p̂(y, T ) = 0, (2.23)

into (2.22) and combining with the first variation of the objective function we obtain

δJ = 〈C∗1C1x̂, δx̂〉+ `2〈 ˙̂ϕ, δ ˙̂ϕ〉 = 〈B∗p̂ + `2 ˙̂ϕ, δ ˙̂ϕ〉.
One can then show by setting δJ = 0 that the optimal feedback law is given by

˙̂ϕ = − 1

`2
B∗p̂. (2.24)

By introducing the linear mapping p̂ = X̂ x̂ and (2.24) into equations (2.21) and (2.23)
one can derive the stationary operator Riccati equation by letting T →∞ in (2.18),(

X̂ A+ A∗ X̂ − 1

`2
X̂ BB∗ X̂ +C∗1C1

)
x̂ = 0, ∀x̂. (2.25)

For details on properties of this type of equation the reader is referred to e.g. Ito &
Morris (1998) and Hulsing (1999). The optimal feedback control law ˙̂ϕ = K̂ x̂ can
now be found through the expression K̂ = −(1/`2)B∗X̂ where X̂ is the non-negative
self-adjoint solution to (2.25). Applying this feedback control gives us the closed loop
system

˙̂x = (A+ BK̂ )︸ ︷︷ ︸
Acl

x̂, (2.26)

where Acl describes the dynamics of the controlled system. Dividing K̂ into three

parts such that K̂ x̂ = K̂ v̂ v̂h + K̂ η̂ η̂h + K̂ϕ̂ ϕ̂, the contribution from the normal
velocity and the normal vorticity can be studied separately. To obtain the feedback
operator for the inhomogeneous flow we need to remove the contribution from the
inhomogeneous part of the flow from the feedback operator using (2.13):

˙̂ϕ = K̂ v̂ v̂h + K̂ η̂ η̂h + K̂ϕ̂ ϕ̂ = K̂ v̂ v̂ + K̂ η̂ η̂ + (K̂ϕ̂ − K̂ v̂ v̂p − K̂ η̂ η̂p)︸ ︷︷ ︸
K̂ϕ̂

ϕ̂. (2.27)
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We can now define the final expression for the feedback operator for the inhomoge-
neous flow for one wavenumber pair:

K̂ (α, β) = [K̂ v̂ , K̂ η̂ , K̂ϕ̂]. (2.28)

Utilizing the Riesz Representation theorem, the operators can be expressed as inte-
gration kernels in the normal direction,

˙̂ϕ = K̂ x̂f =

∫ y∞

0

k̂(y) x̂f(y) dy. (2.29)

An alternative, more direct, approach is to solve for the integration kernel (k̂) using

Chandrasekhar equations as described in e.g. Hulsing (1999). By solving for k̂ all
wavenumber pairs (α, β) and combining these we can inverse Fourier transform the
combined controllers. Since the feedback law is described by products in Fourier
space, convolution integrals are obtained in physical space. Denoting the different
components of the physical-space feedback kernel k by kv , kη and kϕ respectively, the
feedback law in physical space is

ϕ̇(x, z, t) =

∫
Ω

(kv(x− x̄, y, z − z̄) v′(x̄, y, z̄, t)

+ kη(x− x̄, y, z − z̄) η′(x̄, y, z̄, t)) dx̄ dy dz̄

+

∫
Γ

kϕ(x− x̄, z − z̄)ϕ(x̄, z̄, t) dx̄ dz̄, (2.30)

where Ω denotes the inner part of the domain and Γ is the wall. Figure 2(c)
shows isosurfaces of the convolution kernel in physical space for the v velocity,
and figure 2(a) shows contour plots of the same kernel. In figure 2(b) the
two-dimensional kernel for ϕ representing the feedback of the blowing and suction
velocity applied is shown as a contour plot. The convolution kernel for η is visualized
in figures 3(a) and 3(b). These kernels are computed at x = 50 in a box with the dimen-
sions 100× 10× 125.7 in x× y × z and resolution 192× 65× 96 Fourier, Chebyshev,
Fourier modes respectively. The Reynolds number is R = 337.9 with ` = 102 and
the cross-flow velocity W∞ = 1.44232U∞(x = 0) and m = 0.34207. These particular
kernels were computed, at high resolution, for the purpose of visualization and are
not used in the simulations presented here. They are however representative for all the
kernels used in terms of their shape and structure. Notice that the kernels show that
the control mainly relies on upstream information, and that the convective time delay
of the mean flow profiles is taken into account automatically. Turning and twisting
the kernel one can see that it is skewed in a way corresponding to the direction of the
mean-flow streamline varying with y. Another important property of the kernels is
their spatial localization, which is crucial to allow extension to the spatially developing
flow in § 2.4. As an alternative to the approach presented here, the problem could
be formulated in the spatial setting directly. In Cathalifaud & Luchini (2000), the
boundary layer equations are used in an adjoint-based optimization framework, and
Joslin et al. (1997) consider a similar problem for the two-dimensional
Navier–Stokes equations. A major difference between the present (Riccati-based) ap-
proach and the adjoint-based approach is that the latter does not yield constant gain
feedback laws.
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Figure 2. Control convolution kernel for the normal velocity computed at R = 337.9 with ` = 102

and r2 = 0 with a resolution of 192×65×96 Fourier, Chebyshev, Fourier modes in an x×y× z box
with the dimensions 100×10×125.7 respectively. (a) Contour plots of the (x, y)- and (z, y)-plane and
z = 0 and x = 0 respectively. Solid contours are positive values and dashed contours are negative.
(b) Contour plot of the (x, z)-plane at y = 0 (corresponding to kϕ in (2.30)). (c) Isosurfaces at 25
(light) and −25 (dark).

2.4. Extension to spatially developing boundary layers

The key property necessary for the controller to work for a spatially developing
boundary layer is that it only utilizes local information about the flow and that
non-parallel effects are small. Assuming that non-parallel effects are small is not valid
for many flows since the growth of the boundary layer can have a substantial effect
on the eigenvalues of the system. This can however be of less significance for the
application of control since the precise eigenvalues are not as important as the overall
dynamics. In the case with cross-flow there is also a change in the direction of the
outer streamline in the chordwise direction that is not accounted for with the parallel
assumption. Some robustness of the controller performance with respect to a varying
mean flow is expected based on the success in relaminarizing a low Reynolds number
turbulent channel flow in Högberg (2001). This indicates that the controller can
handle finite deviations of the mean flow from that for which it was computed. The
localization of the convolution kernels implies that only information on the flow field
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Figure 3. Control convolution kernel for the normal vorticity computed at R = 337.9 with ` = 102

and r2 = 0 with a resolution of 192×65×96 Fourier, Chebyshev, Fourier modes in an x×y× z box
with the dimensions 100× 10× 125.7 respectively. (a) Contour plots of the (x, y)- and (z, y)-plane at
z = 0 and x = 0 respectively. Solid contours are positive values and dashed contours are negative.
(b) Isosurfaces at 0.5 (light) and −0.5 (dark).

close to the actuation region is used. The property of spatial localization also extends
from the channel to the boundary layer flows as demonstrated in figures 2 and 3.

The control kernel is computed in the spatial case in the same way as in the
temporal case using a base flow profile at some position where the control will
be centred. At every time step of the simulations, the convolution is computed for the
entire domain. The time derivative of the normal velocity on the wall is then obtained
and used to update the control used in the current time step. A filtering procedure
is then applied to confine the control action to the specified interval and give the
boundary condition for the next time step. To ensure zero mass flux after the filtering
of the control a constant is added to the control,

ϕ̆(x, z) = (ϕ(x, z) + c)H(x), where c = −

∫
z

∫
x

ϕ(x, z)H(x) dx dz

zl

∫
x

H(x) dx

, (2.31)
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and H(x) is a hat function consisting of a combination of two step functions. The
step function is defined as

S(r) =


0, r 6 0

1/

[
1 + exp

(
1

r − 1
+

1

r

)]
, 0 < r < 1

1, r > 1,

(2.32)

where r = (x− x0)/∆x is used to allow the slope, position and the extent of the S
function to be changed. Using the step function described by equation (2.32), the hat
function is defined such that

H(x) = S

(
x− (xc − xl/2)

∆x

)
− S

(
x− (xc + xl/2)

∆x

)
, (2.33)

where xc is the position where the control is computed, xl is the length of the control
interval and ∆x is the rise and fall distance.

Since a spectral method is used for discretization we can compute the convolution
integral as a sum in Fourier space. In the parallel flow only the α = β = 0 mode
contains the mean flow, but in a spatial simulation the mean flow varies in the
chordwise direction and all Fourier modes with β = 0 are used to describe it. This
means that in the perturbed flow, all modes with β = 0 contain two components,
one from the mean flow and one from the perturbation. Since the controller is
designed for feedback of the perturbation only, the mean flow component must be
subtracted from the mode before the convolution is computed. One can expect that
the controller will work as well as in the temporal case locally near the position where
the mean flow corresponds to that for which the optimal controller was computed.
Further away from this position the computed control is not expected to be as good.

3. Numerical issues
3.1. Discretization and solution of control problem

The equations are discretized in y using a Chebyshev collocation technique utilizing
the Gauss–Lobatto collocation points such that

f
¯

= [ f
¯1
, . . . , f

¯N
]T , where yj = cos

(
(j − 1)π

N − 1

)
, j = 1, . . . , N, f

¯i
≈ f(yi).

The bar under a variable (
¯
) will be used to distinguish discrete variables and

operators from their continuous counterparts. The operators are mapped to the
Chebyshev interval −1 6 y 6 1 and then the discrete operators are compiled using
the spectral Matlab Differentiation Matrix Suite of Weideman & Reddy (2000). In
particular this suite provides fourth-order differentiation matrices invoking clamped
boundary conditions (f(±1) = f′(±1) = 0) that gives an Orr–Sommerfeld matrix with
nice numerical properties avoiding spurious modes. Integration weights W

¯
for the

Chebyshev grid with the Gauss–Lobatto collocation points are computed using an
algorithm described in the appendix of Hanifi, Schmid & Henningson (1996),∫ 1

−1

f(y) dy =

N∑
j=1

f
¯j
W
¯

(yj), W
¯

(yj) =
bj

N

N−1∑
n=0

cn cos

(
n j π

N − 1

)∫ 1

−1

Tn(y)
dy′

dy
dy,

where y′ is the physical normal coordinate in the boundary layer mapped to the
Chebyshev interval −1 6 y 6 1 and {Tn(y)}N−1

n=0 are the Chebyshev polynomials. The
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coefficients bj and cn are found from

f(y) =

N−1∑
n=0

f̃nTn(y) =

N−1∑
n=0

cnTn(y)

N∑
j=1

bj

N
f(yj)Tn(yj),

where f̃n denotes the coefficients obtained from a Chebyshev transform of f. These
weights provide spectral accuracy of the integration. We can then introduce the
diagonal matrix Θ

¯
such that

Θ
¯ ij

= δijW
¯

(yj),

where δij is the Kronecker delta. The matrix Θ
¯

can be viewed as the ‘mass’ matrix
for the Chebyshev grid. The inner product for the discrete system, approximating the
one used in the continuous case, is then such that

〈f, g〉 ≈
∫ ∞

0

f
¯

∗Θ
¯
g
¯

dt.

The mass matrix is also used in the compilation of the discrete form of the energy
measure operator Q in (2.20) such that the discrete objective function is

J
¯

=

∫ ∞
0

x̂
¯
∗Q
¯
x̂
¯

+ `2 ˙̂ϕ
¯

∗ ˙̂ϕ
¯

dt,

and the discrete adjoint equation and the discrete feedback law are

−˙̂p
¯

= A
¯
∗p̂
¯

+ Q
¯
x̂
¯
, p̂

¯
(t→∞) = 0, ˙̂ϕ

¯
= − 1

`2
B
¯
∗p̂
¯
.

Once everything is expressed in discrete form, an algorithm taken from Skelton (1988,
p. 350) and implemented in Matlab is used to solve the discrete version of the Riccati
equation (2.25). The heart of this computation is the eigenvalue problem obtained by
combining the state and adjoint equations,

d

dt

[
x̂
¯
p̂
¯

]
=

[
A
¯
−(1/`2)B

¯
∗B
¯

−Q
¯

−A
¯
∗

][
x̂
¯
p̂
¯

]
⇒
[
A
¯
−(1/`2)B

¯
∗B
¯

−Q
¯

−A
¯
∗

] [
E
¯1

E
¯2

]
= Λ

¯

[
E
¯1

E
¯2

]
.

When the array of eigenvectors [E
¯1,E¯2]

T and the matrix of eigenvalues Λ
¯

are available,
they are sorted in increasing order so that both the state equation and the adjoint
equation are stable. The solution of the discrete Riccati equation, if it exists, is then
given from this sorted solution to the eigenvalue problem as

E
¯2 = X̂

¯
E
¯1 ⇒ X̂

¯
= E

¯2E¯1
−1,

since X̂
¯

is the linear mapping from x̂
¯

to p̂
¯

introduced in the same way as in the
derivation of the Riccati equation in § 2.3. For a detailed study of Riccati equations
and methods to find their solutions see e.g. Laub (1991) or Hulsing (1999). Now the
discrete version of the feedback operator is given by

K̂
¯

= − 1

`2
B
¯
∗X̂
¯
.

The inverse of Θ
¯

is then used to obtain the approximation of the integral kernel k̂
from the discrete form of K̂ in expression (2.29) such that

k̂
¯

= [Θ
¯
−1K̂

¯ v̂
,Θ
¯
−1K̂

¯ η̂
, K̄̂ϕ̂ ].
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By specifying the size and resolution of a periodic domain in x and z, an array

of wavenumber pairs (αi, βj) is implicitly given. By computing k̂
¯

(αi, y
¯
, βj) for all

wavenumber pairs, a discrete Fourier representation approximating the continuous
feedback kernel is obtained. Through a two-dimensional inverse FFT of the array of
controllers, we then obtain the physical-space convolution kernels like those exemp-
lified in figures 2 and 3. It is shown in Högberg (2001) that the kernels computed
through the present approach are independent of the box size if the periodic domain
is sufficiently large.

3.2. Direct numerical simulations

A spectral method is used to solve the incompressible Navier–Stokes equations for
flow over a flat plate with a pressure gradient. The equation solved is

∂u

∂t
= NS(u) + λ(x)(u− uλ) + F ,

∇ · u = 0,

 (3.1)

where NS represents the Navier–Stokes equations. To retain the periodic boundary
conditions and allow a streamwise inflow and outflow to and from the computational
domain, a fringe region technique (see e.g. Nordin & Henningson 1999) is used in
the spatial simulations. This is implemented in the term λ(x)(u− uλ), where λ(x) is a
positive function that is non-zero only at the end of the computational domain
and uλ is the desired solution in this region. The term F = [F1, F2, F3]

T represents
additional forcing used to introduce perturbations in the flow in spatial simulations or
to maintain a particular mean flow in the temporal simulations. An artificial boundary
is introduced and a free-stream boundary condition applied at a constant distance
from the flat plate. The normal direction is discretized using Chebyshev polynomials
and the horizontal directions by Fourier series with dealiasing according to the 3/2-
rule. Time integration is performed using a third-order Runge–Kutta method for
the advective and forcing terms and a Crank–Nicholson method for the viscous
terms. Other articles where descriptions of this code are available are e.g. Högberg
& Henningson (1998) and Berlin, Wiegel & Henningson (1999). All the details of the
code can be found in Lundbladh et al. (1999).

3.2.1. Temporal simulations

In the temporal (parallel) case we have λ(x) = 0 and a forcing of the form

F =

[
− 1

R

∂2U(y)

∂y2
, 0, − 1

R

W∞
U∞

∂2W (y)

∂y2

]T
is used to maintain a constant parallel flow in time in the entire computational
domain. The mean velocities U(y) and W (y) are given for a specified position x0

by (2.6) and 2.7 respectively. The boundary condition employed at the upper boundary
is Du′ = Dv′ = Dw′ = 0 and a perturbation is introduced through the initial velocity
fields where an eigenvector, computed for a particular wavenumber pair and scaled
to a given perturbation energy, provides the velocity distribution. This initial velocity
field is then marched in time to ensure that no transients are present in the flow
and that the correct growth rate is obtained. Control is then computed and applied
through blowing and suction along the entire wall in the temporal simulations. The
parameters used in the temporal simulations presented in this paper are given for
cases 1–4 in table 1.



164 M. Högberg and D. S. Henningson

Case Flow Perturbation Control
r2 ` x ∈

1 A Eigenmode none
2 A Eigenmode 0 105 all
3 A Eigenmode 105 105 all
4 A Eigenmode 0 102 all
5 B TS wave none
6 B TS wave 0 102 [75, 225]
7 B Optimal none
8 B Optimal 0 102 [75, 225]
9 B Optimal 0 102 [75, 725]

10 C Random none
11 C Random 0 102 [75, 225]
12 D Stationary none
13 E Stationary 0 102 [25, 175]
14 E Stationary 0 102 [145, 295]

Letter Flow Resolution Box Fringe
xstart xmix ∆mix ∆rise ∆fall

A Temporal FSC 4× 49× 4 25.14× 10× 25.14 none
B Spatial Blasius 576× 65× 4 1128× 20× 12.83 1028 1028 40 100 20
C Spatial FSC 192× 49× 48 500× 8× 251.4 350 400 40 100 20
D Spatial FSC 576× 65× 24 500× 8× 25.14 350 400 40 100 20
E Spatial FSC 384× 49× 16 500× 8× 25.14 350 400 40 100 20

Table 1. Overview of simulations performed. The control kernels are always computed using
velocity profiles from the centre of the control interval and at the same box size and resolution as
the simulation. The rise and fall scale of the control region is ∆x = 5 in all cases. The Reynolds
number is R = 337.9 for the FSC cases and R = 468.34 for the Blasius cases. The fringe region in
the spatial simulations always ends at the end of the box and λmax = 0.4 in all cases.

3.2.2. Spatial simulations

For spatial simulation the fringe forcing term is used to make the solution to (3.1)
periodic. This enables us to use spectral methods for simulation of the spatial flow
also even though a part of the domain (the fringe region) will be non-physical. The
fringe forcing with the maximum value λmax is compiled using the step function (2.32)
and has the form

λ(x) = λmax

[
S

(
x− xstart

∆rise

)
− S

(
x− xend

∆fall

+ 1

)]
, (3.2)

where xstart and xend are the start and end of the fringe region and ∆rise and ∆fall are
the rise and fall distance of the fringe forcing respectively. An initial guess for the
velocity field is first obtained from (2.6) and (2.7) such that U = U(x, y), W = W (x, y).
A smooth blending in the fringe region is used to make the flow periodic and we
obtain

uλ = [uλ, vλ, wλ]
T ,

where

uλ = U(x, y) +
[
U(x− xL, y)−U(x, y) + up(x− xL, y, t)] S(x− xmix

∆mix

)
,

wλ = W (x, y) +
[
W (x− xL, y)−W (x, y) + wp(x− xL, y, t)] S(x− xmix

∆mix

)
,
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where xL is the period of the domain in x. The coordinate xmix and the parameter
∆mix denote the start of the blending region and its rise distance respectively. The
normal velocity vλ is then computed from continuity. This gives the flow field used
to compute the boundary conditions as well as the desired flow in the fringe forc-
ing term. The free-stream boundary condition used in the spatial simulations is
Du′ + ku′ = Duλ + kuλ, Dv′ + kv′ = Dvλ + kvλ and Dw′ + kw′ = Dwλ + kwλ, where k
is the modulus of the horizontal wavenumber (k2 = α2 + β2). The initial velocity field
is then relaxed to a stationary solution of the Navier–Stokes equations by running
a simulation without perturbations for a sufficiently long time. The velocity field
obtained through this procedure is then used as the initial condition in the spatial
simulations with perturbations and control.

The disturbances in the flow field can be generated either by forcing to a particular
perturbation in the fringe region or by applying an external volume force somewhere
in the computational domain. The forcing used to generate perturbations in the fringe
is introduced through uλ using up(x, y, t) and wp(x, y, t). In the present simulations this
forcing has been used to introduce the optimal perturbation in the Blasius boundary
layer for cases 7–9 in table 1 where up and wp were computed from the boundary
layer equations as in Andersson, Berggren & Henningson (1999).

Both stationary and time-varying perturbations can be generated through an ex-
ternal volume force. A random forcing is constructed by randomly distributing the
amplitude among a given number of spanwise Fourier components at each time
interval. This forcing, which is directed normal to the wall, has the form

F2 = Frand = exp(−((x− x0)/xscale)
2 − (y/yscale)

2) f(z, t), (3.3)

where

f(z, t) = ampt[(1− b(t)) hi(z) + b(t) hi+1(z)] (3.4)

and

i = int(t/tdt), (3.5)

b(t) = 3p2 − 2p3, (3.6)

p = t/tdt − i, (3.7)

where g(z) and hi(z) are Fourier series of unit amplitude with random coefficients,
and ampt is the amplitude. The number of random coefficients in each Fourier series
is given by a parameter named nmodes. Random values are generated for hi(z) with
the spacing tdt in time and then the ramp function b(t) is used to interpolate this to a
smooth forcing. This forcing is used to generate the travelling cross-flow vortices for
cases 10–11 in table 1 and the parameter values for the forcing are given in table 2.

The harmonic disturbance is constructed as an exponentially decaying function
centred at y = 0 and x = x0. It is also possible to give a relationship between the x-
and z-components of the disturbance to align the disturbance to a streamline. The
harmonic forcing has the form

F2 = Fharm = amps exp(−(y/yscale)
2) g(x, z) h1(t), (3.8)

where

g(x, z) =

{
cos(2π(z − x lskew)/zscale) exp(−[(x− x0)/xscale]

2) if zscale 6= 0,

exp(−[(x− x0)/xscale]
2) if zscale = 0,

(3.9)
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Cases

Parameter 5–6 10–11 12–14

x0 20 20.59 20.59
ampt 0.001
amps 0.0001 0.0036
xscale 5 10 10
yscale 1 1 1
zscale 0 −25.14
lskew 1
nmodes 21
tdt 1
ωh 0.093668 0

Table 2. Forcing parameters for the spatial simulations of cases 5–14.

where

h1(t) = cos(ωht). (3.10)

For stationary disturbances ωh is chosen as zero, otherwise it is the ω value of the
particular perturbation. In the simulations presented in this paper the amplitude is
given by amps for stationary disturbances or ampt for time-dependent (oscillating)
disturbances. The Tollmien–Schlichting wave in cases 5 and 6 is generated using this
harmonic forcing with the parameters given in table 2. An oblique stationary forcing
is used to generate the stationary cross-flow vortices for cases 12–14 in table 1 with
the parameters given in table 2. The other parameters concerning e.g. box sizes and
fringe regions used in the spatial simulations presented in this paper are given for
cases 5–14 in table 1.

4. Control in a parallel boundary layer
In order to examine the properties of the computed control, the parallel boundary

layer flow is studied. This simple case allows us to illustrate and verify the effect of
the control and the parameters of the objective function in terms of temporal eigen-
values and eigenvectors. It also serves as a tool to validate the numerical implemen-
tation of the control algorithm. In a boundary layer flow with a three-dimensional
velocity profile one can always find a direction in which an inviscid instability can
exist due to inflection points in the velocity profile. In this direction there will
be an unstable eigenvalue with a corresponding eigenmode. We will focus on the
flow investigated in Högberg & Henningson (1998) where the Reynolds number
was R = 337.9 at the beginning of the simulation box with a cross-flow velocity
W∞ = 1.44232U∞(x = 0), m = 0.34207 and the width of the box was zl = 25.14. This
flow was studied in spatial simulations and in § 6 the control will be applied to a few
of those cases.

A study of the effect on eigenvalues and eigenvectors of the control is shown
in figure 4. The uncontrolled eigenvalues are those of N in (2.14) shown with
the open circles in figure 4(a), and the controlled eigenvalues are those of the
closed loop system Acl in (2.26). The unstable eigenvalue (−0.15246 + i0.0382) is
moved by a controller with ` = 105 and r = 0 to (−0.15246 − i0.0382), where the
closed loop eigenvalues are plotted as crosses in figure 4(a). The corresponding
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Figure 4. Effect of control on unstable eigenvalues and corresponding eigenvectors. The parameters
are α = 0.25, β = −0.25 with 90 collocation points in y. Uncontrolled eigenvalues and eigenvectors
are for N from (2.14) and controlled ones are for the closed loop system Acl in (2.26). (a) The
uncontrolled eigenvalues are represented by ◦, the controlled ones by x for ` = 105, r = 0 and by
� for ` = 105, r2 = 105. (b) The absolute value of the uncontrolled unstable eigenvector, solid curve
is η and dashed v. (c) The absolute value of the corresponding controlled eigenvector with ` = 105,
solid curve is η and dashed v. This eigenvector is identical for both values of r2.

eigenvector also is modified by the control, compare figures 4(b) and 4(c). The
high penalty on the control parameter results in only the unstable eigenvalue being
moved. In fact, it is just reflected in the real axis. The reflection of the unstable
eigenmode in the real axis obtained through application of control with extremely
large penalty (`) is because this is the cheapest way for the controller to stabilize
the system in terms of control effort. Bewely & Liu (1998) referred to this as the
‘expensive control’ limit, meaning that no matter how high the penalty on the control
is, the minimum requirement on the controller is that it at least stabilizes the system.
An additional eigenvalue appears with the value 0.000001 − i0.000602 and is
due to the extra degree of freedom introduced to apply the control, and is now
the most unstable eigenvalue in the controlled system. The position of this eigenvalue
is expected since it corresponds to a mode with a slow variation in time and
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Figure 5. Controlled eigenvalues of Acl in (2.26) for a controller with ` = 102, r = 0.

thereby a low cost in the objective function. Using the extra penalty term (r2)
on ϕ2 in the objective function will move this eigenvalue down the im-
aginary axis since in this case also the stationary value will be expensive. With
r2 = 105 this eigenvalue will move to (10−8 − i0.190367), shown with the closed
loop eigenvalues denoted by an open square in figure 4(a). With a lower penalty
` the unstable eigenvalue would move more and other eigenvalues would also be
moved in order to obtain exactly the system dynamics that minimizes the objec-
tive function, as illustrated in figure 5. The movement of eigenvalues and modifi-
cations of eigenvectors through application of control is discussed in Bewley & Liu
(1998) in terms of channel flow. They show that the application of the control makes
the eigenvectors ‘more orthogonal’ and thereby lowers the transient energy growth.
Joshi et al. (1997) also study the effect of controllers on eigenvalues for channel
flow.

In temporal direct numerical simulations the eigenvector in figure 4(b) is used as
initial perturbation with an energy density of 2 × 10−11. Then feedback control is
applied first with ` = 105, r2 = 0 and then with ` = 105, r2 = 105 and finally with
` = 102, r2 = 0. In figure 6 the energy growth for these different simulations for cases
1– 4 in table 1 is shown. The decay of the perturbation after control has been applied
is different for the different values of the penalty parameters ` and r. The slope in the
cases where ` = 105 and the uncontrolled case corresponds to the largest eigenvalue
of the dynamical system. In summary the application of the linear control strategy to
parallel boundary layers gives results analogous to those obtained for channel flow
in previous studies.

5. Control in a Blasius boundary layer
To test the strategy on a simple case the Blasius boundary layer is studied for one

case with a TS wave and one case with the optimal perturbation for spatial transient
growth. The Blasius mean flow profile is a special case of the Falkner–Skan profiles
with m = 0 and no mean-flow component in the z-direction. A TS wave is generated
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Figure 6. Energy growth of an uncontrolled unstable eigenvector perturbation and the effect of
applied controls. Dash-dot: uncontrolled energy growth from case 1, dotted: controlled with ` = 105

and r2 = 0 from case 2, solid: controlled with ` = 105 and r2 = 105 from case 3, dashed: controlled
with ` = 102 and r2 = 0 from case 4.

by an oscillating two-dimensional forcing at the dimensionless frequency F = 200,
where F = 2πfν/U2∞ × 106, at the beginning of the box and allowed to develop
downstream. The domain and resolution for the simulation is given in table 1, case 5.
The flow is perturbed just upstream of branch I of the neutral stability curve which
is at about Re = 507 and the perturbation grows exponentially, shown as the dashed
line in figure 7(a), in the uncontrolled case until it reaches branch II at about
Re = 723. The small transient at the beginning is because we do not force to a pure
TS eigenmode. In case 6 in table 1 the controller applied between Re = 568.4 and
Re = 729 corresponding to x ∈ [75, 225]. The solid line in figure 7(a) shows that
the exponential growth is completely removed by the controller in the control region
and instead there is exponential decay. These results are similar to those obtained by
Walther et al. (2001) where the application of control resulted in exponential decay
of the perturbation energy in the unstable region. In figure 7(b) the control signal
on the wall is plotted at different times during a period of the TS wave. The control
signal looks like a wave with decaying amplitude and is periodic in time.

Next the performance of the controller for a transiently growing perturbation is
studied. The spatial optimal perturbations in a Blasius boundary layer have been
computed by Andersson et al. (1999) and Luchini (2000). The particular optimal
spatial perturbation used here is computed using the technique from Andersson
et al. (1999); it is introduced at x = −158.16 where the local Reynolds number is
R0 = 395.4 and then marched forward using the linear equations to the position
where x = 0 where the simulation box starts and the local Reynolds number is
Re = 468.34. The perturbation is optimized to be the one with maximum growth at
x = 237.24 in the simulation box. Notice that this means that no other perturbation
can cause larger growth at this particular position, which does not necessarily imply
that the perturbation has its maximum at this position unless it is the global optimal
perturbation. This perturbation is then used in DNS with and without control. The
domain and resolution are given in table 1 for case 7 which is the uncontrolled
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Figure 7. (a) The spatial energy growth of a TS wave perturbation in a Blasius boundary layer
with control from case 6 (solid) and without control from case 5 (dashed). The non-dimensional
frequency of the perturbation is F = 200. Control is applied in x ∈ [75, 225]. (b) Control signal
during one time period of the TS wave.

flow. In figure 8(a) the dotted line shows the energy evolution as the perturbation is
marched using the linear equations. The solid line shows the result for the uncontrolled
perturbation using DNS. The energy measure is defined as

E(u(x)) =

∫ 2π/β

0

∫ ∞
0

(u2 + v2 + w2) dy dz,

and E0 is the energy of the perturbation at the initial position.
In case 8 the same controller and control interval as in the TS wave case (case 6) is

used. In figure 8(a) the dash-dotted line shows the perturbation energy for this case.
Here the simulation is run until a stationary state has been obtained. Immediately
the perturbation reaches the control interval its energy is reduced and then continues
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Figure 8. (a) The spatial energy growth of the optimal spatial perturbation at x = 237.24 with
R = 468.34 in the Blasius boundary layer. Dotted: computed from the boundary layer equations.
Solid: computed with DNS for case 7. Dash-dotted: with control applied in x ∈ [75, 225] from case
8. Dashed: with control applied in x ∈ [75, 725] from case 9. (b) The control (v) distribution at
y = z = 0 for the streak mode in case 8 with control in x ∈ [75, 725] (solid), and case 9 with control
in x ∈ [75, 225] (dashed).

to decay throughout the control interval. The control velocity for this case is plotted
as the dashed line in figure 8(b) showing an initial peak and then a slowly decaying
amplitude. Downstream of the control interval the perturbation grows again, but does
not reach the same energy level as in the uncontrolled case.

In case 9 a controller computed further downstream, still with l = 102 and r2 = 0, is
applied in a longer region centred at x = 400 and for x ∈ [75, 725]. There is substantial
growth of the boundary layer in this longer interval and the parallel assumption is
truly challenged. Even though there is a larger difference in this case between the
mean flow used to compute the control kernel and that at the position where the
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control interval starts, the dashed line in figure 8(a) shows that the energy decays
rapidly and is maintained at a low level by the control throughout the control interval.
The control signal, solid line in figure 8(b), is similar to the one obtained for the
shorter interval initially and then there is a slow decay in amplitude for the long
interval case.

Comparisons with some of the results of Cathalifaud & Luchini (2000) where
optimization is performed to minimize the perturbation energy with control over the
whole plate show that the control velocity has a similar distribution and that a similar
effect on the perturbation energy is obtained. In the cases where they apply control
over only a small part of the plate, they found a slightly different shape of the control
velocity distribution, with a peak also at the end of the interval. This is probably due
to the optimization problem being slightly different in their case, accounting for the
effects of the localization of the control, which is not the case for the optimization
problem solved here.

The performance of the control over the longer control interval in case 9 is
surprisingly good considering that the change of the mean flow profile is fairly large
in this interval. It seems that the controller is indeed robust to finite variations of the
mean flow profile and our assumption thereby appears justified.

6. Control in a Falkner--Skan--Cooke flow
6.1. Travelling vortices

The flows cases for testing the controller in the FSC flow are taken directly from
Högberg & Henningson (1998). Travelling cross-flow vortices appear in experiments
with high levels of free-stream turbulence, for example in Müller & Bippes (1988), and
in the simulation of case 10 a perturbation, randomly varying in time and in space,
is applied in the beginning of the box. A low amplitude ensures that nonlinear effects
are small and travelling cross-flow vortices then develop downstream. The box size,
resolution and other details are given in table 1. The time average of the perturbation
energy, plotted as the dashed line in figure 9, shows the growth of these travelling
vortices. The vortices merge and split and form a complicated pattern. A grey-scale
image of a snapshot of the normal velocity at y = 0.5 is shown in figure 10(a) where
whiter shades indicate positive velocity and darker shades negative velocity. In this
case the control will have to react quickly in order to respond to the variation in the
perturbation.

Control kernels have been computed at the same resolution and box size as in
cases 10 and 11 in table 1, with ` = 102 and r2 = 0 at x = 150 where ψ = 51.96◦
and δ∗ = 1.1232. The control is then allowed to act in the interval x ∈ [75, 225]. The
simulation is run long enough to obtain stationary statistics of the controlled flow and
the time average of the energy in the box with control is plotted as the solid line in
figure 9. The controller successfully changes the growth into decay of the energy and
downstream of the control region there is again exponential growth of the perturbation
all the way to the start of the fringe. The difference between the controlled and
uncontrolled perturbation energy where the fringe region starts is about four decades.
A snapshot of the normal velocity in case 11 is shown in figure 10(b) at the same
y-plane and time as in the uncontrolled case. The apparent ‘strip’ in the beginning
control interval clearly shows that the control action is strongest in the beginning of
the control region, and since the vortices almost completely disappear after this the
controller does not have to act so strongly downstream. Looking closely at figure 10(b)
one can see that a light shade, indicating a positive normal velocity, leads to a dark spot
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Figure 9. Time average of energy integrated in the z-direction for uncontrolled (dashed) and
controlled (solid) simulations of travelling cross-flow vortices from cases 10 and 11 respectively.

in the control region, and vice versa for darker shades, suggesting that the control is of
opposition type initially. In Wassermann & Kloker (2000) an opposition type control
using blowing and suction in a strip where the optimal phase shift of the control
signal was computed for each spanwise mode separately was applied to a cross-flow
vortex packet. This strategy was also successful in reducing the perturbation energy,
and the importance of the individually computed phase shift for different modes
was emphasized. Using the present control strategy the optimal phase shift appears
naturally which is a great advantage.

6.2. Stationary vortices

If stationary perturbations are introduced at the beginning of the box at a large
enough amplitude, stationary nonlinearly saturated cross-flow vortices will develop
downstream. The instability properties of these vortices have recently been thoroughly
studied both experimentally by e.g. Kawakami, Kohama & Okutsu (1999) and Lerche
(1997), and numerically by e.g. Högberg & Henningson (1998) and Malik et al.
(1999). If we consider stationary perturbations at a finite amplitude applied at
the beginning of the box in case 12 (box size and resolution is given in table 1),
the vortices will reach a saturated level where nonlinearities dominate at the end
of the physical region of the box. The energy in the β = 0.25 mode, the dashed line
in figure 11, grows exponentially initially and then the nonlinear saturation causes
the growth rate to decrease and close to the fringe the growth is close to zero. The
energy of the five lowest beta modes is shown in figure 12(a) where one can see that
all these modes have similar behaviour but the β = 0.25 mode dominates. Control is
first applied in case 13 far enough upstream for linear effects to dominate. Kernels
have been computed for the mean flow at x = 100 where ψ = 52.95◦ and δ∗ = 1.085
with ` = 102 , r2 = 0 and with the box size and resolution given in table 1 for case
12. The simulations of the controlled flow are performed at a lower resolution than
in the uncontrolled case with 384× 49× 16 and use kernels with the same resolution.
The control is allowed to act in the interval x ∈ [25, 175] which starts just down-
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Figure 10. Snapshots of the normal velocity v in an (x, z)-plane at y = 0.5 for (a) case 10 without
control and (b) case 11 with control. Black is v 6 −4.5 × 10−5 and white is v > 5.5 × 10−5. The
control is applied in x ∈ [75, 225].

stream of where the perturbations are introduced in the flow. The initial flow field
for the simulation was one with fully developed cross-flow vortices where the control
was turned on instantaneously and after some transient behaviour of the flow and
the control a steady state was obtained. The stationary flow is well-resolved with
the present resolution since the perturbation levels are substantially lower than
in the uncontrolled case. The solid line in figure 11 shows the energy in the β = 0.25
mode for this case. The perturbation is efficiently reduced by the control but new
cross-flow vortices start to develop downstream of the control region as could be
expected for this type of inflectional instability. Studying the five lowest β modes
in figure 12(b) shows that the controller efficiently reduces the energy of all these
modes. The control velocity on the wall is plotted for one spanwise location at z = 0
in figure 13(a) showing a regular sinusoidal signal with a maximum amplitude in the
beginning of the control interval. The control region is then, case 14, moved further
downstream centred at x = 220 where ψ = 50.72◦ and δ∗ = 1.1723. The control is
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Figure 11. Energy growth of uncontrolled perturbation and effect of applied control in spatial DNS
for β = 0.25. Dashed: case 12, uncontrolled. Solid: case 13, controlled with ` = 102 and r2 = 0 in
the interval x ∈ [25, 175] centred at x = 100. Dash-dot: case 14, controlled with ` = 102 and r2 = 0
in the interval x ∈ [145, 295] centred at x = 220.
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Figure 12. The energy in the five lowest β modes from simulations with a strong stationary
perturbation for (a) case 12, uncontrolled; (b) case 13, control in x ∈ [25, 225] and (c) case 14, with
control in x ∈ [145, 295].

allowed to act in the interval x ∈ [145, 295]. In the simulation a laminar flow with the
stationary perturbation at the beginning of the domain was used as initial flow field.
Then when the perturbation reaches the control region the controller reacts to stabilize
the flow. This is easier than starting with the fully developed perturbation since the
transients when the control is turned on are strong in this case and the time step
in the simulation will be short. At the region where control is applied, the vortices
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Figure 13. The normal velocity on the wall at z = 0 in the controlled cases with stationary
perturbations. (a) Case 13 with control in x ∈ [25, 175] using a controller computed with ` = 102

and r2 = 0. (b) Case 14 with control in x ∈ [145, 295] using a controller computed with ` = 102 and
r2 = 0.

will have reached a higher amplitude than in the previous case and the nonlinear
effects are stronger. The simulation is run until a stationary state is obtained and the
resulting energy is shown by the dash dotted line in figure 11. Despite the nonlinearity
the controller reduces the energy of the perturbation within the control interval. The
energy curve has some wiggles initially where the perturbation is strongest indicating
that nonlinear effects are influencing the control. The normal velocity at the wall
is plotted for one spanwise position at z = 0, also for case 14, in figure 13(b). The
control signal in this case is distorted and has no apparent deterministic structure,
which probably is due to the effect of nonlinearities. The maximum amplitude, which
is larger than in the upstream interval, of the control appears at the beginning of
the control interval and after a few strong oscillations it decays rapidly. The control
affects all wavenumbers β and a plot of the effect of the controller on the five lowest
values of β in the simulation is shown in figure 12(c). In this case the higher modes
appear to be amplified at the beginning of the control region before they rapidly
decay. The higher energy levels in these modes is related to the shape of the control
signal with the nonlinear behaviour.

7. Discussion and conclusions
It was expected based on previous work that the optimal controller could stabilize

unstable temporal eigenvalues. The changes of eigenvalues and eigenvectors for
control applied to TS waves and the effect of controllers on transient growth had
been studied by for example Bewley & Liu (1998) for channel flow. The main question
here was whether these methods were transferable to the spatially evolving flow. Even
though we have made some assumptions about the physics, we have shown that
the controller works very well also for spatially developing flows. The growth of
TS waves could be turned into decay by applying control over the unstable interval
also in the spatial case. When there was a spatial optimal perturbation for transient
growth in the Blasius boundary layer, the controller made the perturbation decay
slowly within the control interval. In this case it was also shown that the control
is effective over a long spatial interval and not only locally where it is computed.
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The flow with inflectional instability in the FSC boundary layer was stabilized by
the controller for random as well as stationary perturbations. The additional spatial
property of a changing direction of the mean flow did not have a significant effect on
the effectiveness of the controller in this case. Even higher amplitude perturbations
where nonlinear effects are present were stabilized resulting in energy decay in the
controlled interval, indicating some robustness of the controller to nonlinearities, as
well as to changes of the mean flow.

In summary it is demonstrated that the three main mechanisms for energy growth in
boundary layers can be controlled: viscous instabilities, non-modal transient energy
growth and inflectional instabilities triggered by both stationary and time-varying
perturbations. It appears that it is sufficient to make use of the Orr–Sommerfeld–
Squire equations when designing controllers for most types of primary instability
transition scenarios. The importance of linear processes for transition as well as
turbulence has been emphasized by several authors investigating these processes see
e.g. Henningson (1996), Kim & Lim (2000). The strength and advantage of the present
formulation of the control problem is that there is no dependence on what type of
perturbation the flow is subject to and transition due to secondary instabilities should
not be an issue if one can control the primary ones. One question is how effective the
controllers are for preventing transition to turbulence. The present study indicates
that the controllers can handle some degree of nonlinearity, and quantification of
the controller performance for transition in channel flow in Högberg et al. (2002)
shows that the transition threshold for a random noise perturbation can be increased
by approximately 500% using linear control. It should be mentioned that there are
also important types of instabilities not considered here, namely the absolute and
global instabilities. A controller for global instabilities must probably incorporate
non-parallel effects since these are crucial for their existence and this cannot be
obtained using the present formulation of the control problem.

To be able to make use of this type of feedback controller in practice there
is a need for a good way of estimating the state of the flow based on realizable
measurement data. An estimator forcing can be computed from the linear equations
as described in Högberg et al. (2002) and then applied to force a model of the flow
using wall measurements only. The combination of an estimator and a controller is
called a compensator, and provides means to control the flow based on these wall
measurements. The effectiveness of the estimator and the compensator for transition
in channel flow is also studied in Högberg et al. (2002), and a natural next step is
to extend these ideas to the spatially developing boundary layer flows. To obtain a
control system usable in practice there might be a need to utilize a robust controlH∞
design to improve the robustness of the compensator. This was studied for the linear
system in Bewley & Liu (1998) and showed some different properties compared to
the optimal control design which could improve the behaviour of the compensator
when e.g. nonlinearities are present. In future work this possibility should be explored
further and tested also in the nonlinear setting.

The authors wish to thank Professor Thomas R. Bewley for pointing us in the
direction of using linear control techniques, and for cooperation in creating the
foundation for the present work.
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